The Unusual Suspects: Deep Learning Based Mining of Interesting Entity Trivia from Knowledge Graphs

نویسندگان

  • Nausheen Fatma
  • Manoj Kumar Chinnakotla
  • Manish Shrivastava
چکیده

Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness or unexpectedness. Trivia could be successfully employed to promote user engagement in various product experiences featuring the given entity. A Knowledge Graph (KG) is a semantic network which encodes various facts about entities and their relationships. In this paper, we propose a novel approach called DBpedia Trivia Miner (DTM) to automatically mine trivia for entities of a given domain in KGs. The essence of DTM lies in learning an Interestingness Model (IM), for a given domain, from human annotated training data provided in the form of interesting facts from the KG. The IM thus learnt is applied to extract trivia for other entities of the same domain in the KG. We propose two different approaches for learning the IM a) A Convolutional Neural Network (CNN) based approach and b) Fusion Based CNN (F-CNN) approach which combines both hand-crafted and CNN features. Experiments across two different domains Bollywood Actors and Music Artists reveal that CNN automatically learns features which are relevant to the task and shows competitive performance relative to hand-crafted feature based baselines whereas FCNN significantly improves the performance over the baseline approaches which use hand-crafted features alone. Overall, DTM achieves an F1 score of 0.81 and 0.65 in Bollywood Actors and Music Artists domains respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trivia Mining from Knowledge Graphs

Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness or unexpectedness. Trivia could be successfully employed to promote user engagement in various product experiences featuring the given entity. A Knowledge Graph (KG) is a semantic network which encodes various facts about entities and their relationships. We propose a novel approach called DBpedia Trivia ...

متن کامل

Did You Know? - Mining Interesting Trivia for Entities from Wikipedia

Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness, unexpectedness or weirdness. In this paper, we propose a novel approach for mining entity trivia from their Wikipedia pages. Given an entity, our system extracts relevant sentences from its Wikipedia page and produces a list of sentences ranked based on their interestingness as trivia. At the heart of ou...

متن کامل

Mining Interesting Trivia for Entities from Wikipedia

TRIVIA is any fact about an entity, which is interesting due to any of the following characteristics − unusualness, uniqueness, unexpectedness or weirdness. Such interesting facts are provided in Did You Know? section at many places. Although trivia are facts of little importance to be known, but we have presented their usage in user engagement purpose. Such fun facts generally spark intrigue a...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Sports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey

In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017